# Threat Model ## Executive Summary This document provides a comprehensive threat model for the Review Bot Automator project. It identifies assets, threat actors, attack vectors, and specific threat scenarios with risk ratings and mitigations based on the **STRIDE** methodology (Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service, Elevation of Privilege). **Purpose**: Enable security teams, auditors, and maintainers to understand the security landscape and evaluate risk posture. **Last Updated**: 2025-11-25 **Next Review**: Quarterly or after major architectural changes --- ## Asset Identification ### Critical Assets #### 1. Source Code Files **Description**: Local source code files that the system reads and modifies. **Value**: HIGH **Justification**: Contains intellectual property, business logic, and potentially sensitive data. **Protection Mechanisms**: * Path traversal prevention (`InputValidator.validate_file_path()`) * Atomic file operations (`SecureFileHandler`) * Backup and rollback capabilities * Secret scanning before modifications (`SecretScanner`) --- #### 2. Git Repositories **Description**: Version control system containing project history and code. **Value**: HIGH **Justification**: Maintains integrity of code history, enables collaboration, critical for audit trails. **Protection Mechanisms**: * Read-only operations by default * Commit signing support * Git hook validation (future) * Branch integrity verification --- #### 3. GitHub API Tokens **Description**: Authentication tokens for accessing GitHub API and repositories. **Value**: CRITICAL **Justification**: Provides access to private repositories, can be used for unauthorized actions. **Protection Mechanisms**: * Token validation (`InputValidator.validate_github_token()`) * Secure token storage (environment variables, not in code) * Secret scanning to prevent accidental exposure * Token-based authentication with minimum required scopes --- #### 4. User Data and PII **Description**: Minimal user data collected (GitHub usernames, email addresses from commits). **Value**: MEDIUM **Justification**: Subject to GDPR and privacy regulations, but limited collection. **Protection Mechanisms**: * Data minimization (collect only what's necessary) * No persistent storage of personal data * Secure logging (no PII in logs) * User consent for data processing --- #### 5. File System Access **Description**: Local file system where repositories are stored and modified. **Value**: HIGH **Justification**: Compromise could lead to data loss, malware installation, or system access. **Protection Mechanisms**: * Workspace containment (`resolve_file_path()` with `enforce_containment=True`) * Symlink prevention * Permission checks before file operations * Restricted file system scope --- #### 6. CI/CD Pipeline **Description**: GitHub Actions workflows that run security scans, tests, and fuzzing. **Value**: HIGH **Justification**: Compromise could inject malicious code, bypass security controls, or expose secrets. **Protection Mechanisms**: * Pinned action versions (commit SHA) * Step Security Harden Runner * Restricted workflow permissions * Secret scanning in workflows * CodeQL analysis for workflow vulnerabilities --- ## Threat Actors ### 1. Malicious External Users **Capability**: LOW to MEDIUM **Motivation**: Exploit vulnerabilities for data theft, system compromise, or reputation damage. **Attack Vectors**: * Malicious code suggestions via compromised CodeRabbit API * Social engineering to trick users into applying malicious changes * Exploiting publicly disclosed vulnerabilities **Typical Attacks**: Path traversal, code injection, secret leakage --- ### 2. Compromised Dependencies **Capability**: MEDIUM to HIGH **Motivation**: Supply chain attack to inject malware, steal credentials, or backdoor systems. **Attack Vectors**: * Typosquatting on PyPI * Compromised legitimate packages * Dependency confusion attacks **Typical Attacks**: Remote code execution, data exfiltration, persistent backdoors --- ### 3. Insider Threats (Low Trust) **Capability**: MEDIUM **Motivation**: Malicious insiders with access to codebase or CI/CD. **Attack Vectors**: * Direct code commits bypassing security reviews * Modification of security configurations * Disabling security controls **Typical Attacks**: Logic bombs, backdoors, data theft --- ### 4. Automated Attack Tools **Capability**: LOW **Motivation**: Automated scanning for known vulnerabilities. **Attack Vectors**: * Vulnerability scanners * Exploit frameworks (Metasploit, etc.) * Botnet attacks **Typical Attacks**: Known CVE exploitation, brute force, DoS --- ## STRIDE Threat Analysis ### Spoofing (Identity Forgery) #### T1: GitHub API Spoofing **Description**: Attacker impersonates GitHub API to provide malicious code suggestions. **Impact**: HIGH **Likelihood**: MEDIUM **Risk Rating**: HIGH **Attack Scenario**: 1. Attacker performs MITM attack on network 2. Intercepts GitHub API calls 3. Provides malicious responses with crafted code suggestions 4. System applies malicious suggestions **Mitigations**: * ✅ HTTPS enforcement for all API calls (security.yml:348-350) * ✅ Certificate validation (`InputValidator.validate_github_url()`) * ⏳ Certificate pinning (planned) * ✅ Token-based authentication **Residual Risk**: LOW (with HTTPS and token auth) --- #### T2: Git Commit Spoofing **Description**: Attacker creates commits with forged author information. **Impact**: MEDIUM **Likelihood**: MEDIUM **Risk Rating**: MEDIUM **Attack Scenario**: 1. Attacker modifies git config 2. Sets fake author identity 3. Creates malicious commits with trusted identity 4. Commits appear to come from legitimate developers **Mitigations**: * ⏳ Git commit signing support (planned Phase 0.8) * ✅ Audit logging of all operations * ✅ Read-only git operations by default **Residual Risk**: MEDIUM (until commit signing implemented) --- ### Tampering (Data Modification) #### T3: Path Traversal Attack **Description**: Attacker crafts file paths to access/modify files outside repository. **Impact**: CRITICAL **Likelihood**: HIGH **Risk Rating**: CRITICAL **Attack Scenario**: 1. Attacker provides suggestion with path: `../../etc/passwd` 2. System resolves path outside workspace 3. Attacker reads sensitive system files 4. Potential overwrite of critical files **Mitigations**: * ✅ **IMPLEMENTED**: `InputValidator.validate_file_path()` (input_validator.py:131-230) * ✅ Path normalization and resolution * ✅ Workspace containment enforcement (`enforce_containment=True`) * ✅ Symlink detection and rejection * ✅ Relative path validation **Implementation Reference**: ```python # json_handler.py:92-109 if not InputValidator.validate_file_path( path, allow_absolute=True, base_dir=str(self.workspace_root) ): self.logger.error(f"Invalid file path rejected: {path}") return False file_path = resolve_file_path( path, self.workspace_root, allow_absolute=True, validate_workspace=True, enforce_containment=True ) ``` **Residual Risk**: VERY LOW (multiple layers of protection) --- #### T4: Code Injection via YAML/JSON/TOML **Description**: Attacker injects executable code through configuration files. **Impact**: CRITICAL **Likelihood**: MEDIUM **Risk Rating**: HIGH **Attack Scenario**: 1. Attacker crafts malicious YAML: ```yaml key: !!python/object/apply:os.system ["rm -rf /"] ``` 2. System parses YAML with unsafe parser 3. Code executes during parsing 4. System compromise **Mitigations**: * ✅ **IMPLEMENTED**: Safe YAML parser (`yaml.safe_load()`) in input_validator.py:332-362 * ✅ Safe JSON parser with duplicate key detection (json_handler.py:442-465) * ✅ Safe TOML parser (toml_handler.py) * ✅ Whitelist of allowed data types * ✅ No dynamic code execution **Implementation Reference**: ```python # input_validator.py:348-362 try: yaml_data = yaml.safe_load(content) # safe_load prevents !!python/ if not isinstance(yaml_data, dict): return False, "YAML must be a dictionary at top level" return True, "Valid YAML" except yaml.YAMLError as e: return False, f"Invalid YAML: {e}" ``` **Residual Risk**: VERY LOW (safe parsers enforced) --- #### T5: File System Race Conditions (TOCTOU) **Description**: Time-of-check to time-of-use vulnerabilities in file operations. **Impact**: MEDIUM **Likelihood**: LOW **Risk Rating**: LOW **Attack Scenario**: 1. System checks file permissions 2. Attacker replaces file with malicious version 3. System operates on malicious file 4. Data corruption or unauthorized access **Mitigations**: * ✅ **IMPLEMENTED**: Atomic file operations (secure_file_handler.py:96-215) * ✅ Temporary file with atomic rename (os.replace) * ✅ File locking where applicable * ✅ Transaction-like semantics **Implementation Reference**: ```python # json_handler.py:169-188 with tempfile.NamedTemporaryFile(..., delete=False) as temp_file: temp_path = Path(temp_file.name) temp_file.write(json.dumps(merged_data, indent=2) + "\n") temp_file.flush() os.fsync(temp_file.fileno()) # Ensure written to disk os.replace(temp_path, file_path) # Atomic operation ``` **Residual Risk**: VERY LOW (atomic operations enforced) --- ### Repudiation (Denying Actions) #### T6: Audit Log Tampering **Description**: Attacker modifies or deletes logs to hide malicious activity. **Impact**: MEDIUM **Likelihood**: LOW **Risk Rating**: LOW **Attack Scenario**: 1. Attacker gains access to log files 2. Deletes or modifies incriminating log entries 3. Malicious activity goes undetected 4. Forensic investigation hampered **Mitigations**: * ✅ Secure logging (no secrets in logs) * ✅ Structured logging with timestamps * ⏳ Centralized log aggregation (future) * ⏳ Immutable log storage (future) **Residual Risk**: MEDIUM (until centralized logging) --- ### Information Disclosure (Data Leakage) #### T7: Secret Leakage in Code Suggestions **Description**: Attacker tricks system into applying suggestions containing secrets. **Impact**: HIGH **Likelihood**: MEDIUM **Risk Rating**: HIGH **Attack Scenario**: 1. Attacker crafts suggestion with embedded API key 2. System applies suggestion without detection 3. Secret committed to repository 4. Secret exposed in public repository **Mitigations**: * ✅ **IMPLEMENTED**: `SecretScanner` with 17 pattern types (secret_scanner.py:73-140) * ✅ Pre-application secret scanning * ✅ False positive filtering * ✅ TruffleHog scanning in CI/CD * ✅ GitGuardian integration (future) **Implementation Reference**: ```python # secret_scanner.py:154-194 def scan_content(content: str, stop_on_first: bool = False) -> list[SecretFinding]: findings: list[SecretFinding] = [] for finding in SecretScanner.scan_content_generator(content): findings.append(finding) if stop_on_first: break # Early exit on first secret return findings ``` **Patterns Detected**: * GitHub personal/OAuth/server/refresh tokens * AWS access keys and secret keys * OpenAI API keys * JWT tokens * Private keys (RSA, SSH, etc.) * Slack tokens * Google OAuth * Azure connection strings * Database URLs with passwords * Generic API keys, passwords, secrets, tokens **Residual Risk**: LOW (comprehensive scanning) --- #### T8: Sensitive Data in Error Messages **Description**: Error messages leak sensitive file paths, content, or system info. **Impact**: LOW **Likelihood**: MEDIUM **Risk Rating**: LOW **Attack Scenario**: 1. Attacker triggers error conditions 2. Error messages reveal internal paths 3. Attacker maps file system structure 4. Information used for further attacks **Mitigations**: * ✅ Sanitized error messages (no stack traces in production) * ✅ No file content in error output * ✅ Generic error messages for users * ✅ Detailed errors only in debug logs **Residual Risk**: VERY LOW (sanitized errors) --- ### Denial of Service (Availability) #### T9: Large File Processing DoS **Description**: Attacker provides extremely large files to exhaust system resources. **Impact**: MEDIUM **Likelihood**: MEDIUM **Risk Rating**: MEDIUM **Attack Scenario**: 1. Attacker submits suggestion for 1GB file 2. System attempts to load entire file into memory 3. Out-of-memory condition 4. System crash or hang **Mitigations**: * ✅ File size limits (configurable) * ✅ Memory-efficient streaming for large files (where applicable) * ✅ Timeout mechanisms * ⏳ Rate limiting (future) **Residual Risk**: MEDIUM (file size limits configurable) --- #### T10: Algorithmic Complexity Attacks **Description**: Attacker exploits worst-case performance of algorithms. **Impact**: LOW **Likelihood**: LOW **Risk Rating**: LOW **Attack Scenario**: 1. Attacker crafts pathological input 2. System uses O(n²) or worse algorithm 3. CPU exhaustion 4. Service degradation **Mitigations**: * ✅ Efficient algorithms (e.g., line-sweep for overlap calculation) * ✅ ClusterFuzzLite fuzzing for performance regression detection * ✅ Timeout mechanisms **Residual Risk**: VERY LOW (efficient algorithms, fuzzing) --- ### Elevation of Privilege (Unauthorized Access) #### T11: Privilege Escalation via File Permissions **Description**: Attacker exploits improper file permissions to gain elevated access. **Impact**: HIGH **Likelihood**: LOW **Risk Rating**: MEDIUM **Attack Scenario**: 1. Attacker provides suggestion modifying file permissions 2. System applies suggestion without validation 3. Critical files made world-writable 4. Attacker gains unauthorized access **Mitigations**: * ✅ File permission preservation (json_handler.py:164-166, 183-185) * ✅ Permission checks before operations * ✅ No arbitrary file permission modifications * ✅ Restricted file system scope **Implementation Reference**: ```python # json_handler.py:164-166 if file_path.exists(): original_mode = os.stat(file_path).st_mode # ...after writing.. # json_handler.py:183-185 if original_mode is not None: os.chmod(temp_path, stat.S_IMODE(original_mode)) ``` **Residual Risk**: LOW (permission preservation) --- #### T12: Dependency Confusion Attack **Description**: Attacker publishes malicious package with same name to public repository. **Impact**: HIGH **Likelihood**: LOW **Risk Rating**: MEDIUM **Attack Scenario**: 1. Attacker identifies internal package name 2. Publishes malicious version to PyPI 3. Build system installs malicious package 4. Code execution and compromise **Mitigations**: * ✅ Dependency pinning (requirements-dev.txt with hashes) * ✅ `pip-compile --generate-hashes` for integrity verification * ✅ Dependency scanning (pip-audit + Trivy SBOM scanning) * ✅ OpenSSF Scorecard monitoring for dependency hygiene * ✅ Automatic Dependency Submission workflow **Residual Risk**: LOW (multiple layers of dependency protection) --- ### LLM-Specific Threats (Phase 5) #### T13: LLM Data Exfiltration via PR Comments **Description**: Sensitive data (secrets, credentials) in PR comments sent to external LLM APIs. **Impact**: HIGH **Likelihood**: MEDIUM **Risk Rating**: HIGH **Attack Scenario**: 1. User posts PR comment containing API keys or credentials 2. Comment body is processed by LLM parser 3. Secrets are sent to external LLM API (Anthropic/OpenAI) 4. Credentials exposed to third-party service **Mitigations**: * ✅ **IMPLEMENTED**: `SecretScanner.scan_content()` before LLM calls (parser.py:147-158) * ✅ **IMPLEMENTED**: `LLMSecretDetectedError` raised when secrets detected * ✅ 17 secret detection patterns covering major providers * ✅ Configurable `scan_for_secrets` parameter (default: True) **Residual Risk**: LOW (comprehensive pre-LLM secret scanning) --- #### T14: Prompt Injection Attack **Description**: Malicious PR comments containing prompts designed to manipulate LLM responses. **Impact**: MEDIUM **Likelihood**: MEDIUM **Risk Rating**: MEDIUM **Attack Scenario**: 1. Attacker crafts PR comment with embedded instructions 2. Comment processed by LLM parser 3. LLM follows injected instructions instead of parsing intent 4. Malicious code suggestions generated **Mitigations**: * ✅ Structured JSON output format enforced * ✅ Schema validation on all ParsedChange objects * ✅ Confidence threshold filtering (default: 0.5) * ✅ Invalid JSON responses rejected **Residual Risk**: MEDIUM (inherent LLM limitation, multiple validation layers) --- #### T15: LLM Cache Poisoning **Description**: Attacker attempts to poison prompt cache with malicious responses. **Impact**: MEDIUM **Likelihood**: LOW **Risk Rating**: LOW **Attack Scenario**: 1. Attacker crafts comment that generates specific cache key 2. Malicious response cached 3. Future identical prompts return poisoned response 4. Malicious code suggestions served from cache **Mitigations**: * ✅ SHA-256 hash-based cache keys (collision-resistant) * ✅ Cache stores prompt hash, not actual prompt text * ✅ Cache files have 0600 permissions (owner-only) * ✅ Cache directory has 0700 permissions **Residual Risk**: VERY LOW (cryptographic hash prevents practical collision attacks) --- #### T16: LLM Cost Exhaustion Attack **Description**: Attacker triggers excessive LLM API calls to exhaust budget or cause financial harm. **Impact**: LOW **Likelihood**: LOW **Risk Rating**: LOW **Attack Scenario**: 1. Attacker creates many PR comments 2. Each comment triggers LLM API call 3. Budget exhausted rapidly 4. Financial impact or denial of service **Mitigations**: * ✅ **IMPLEMENTED**: `CostTracker` with configurable budget * ✅ **IMPLEMENTED**: `LLMCostExceededError` when budget exceeded * ✅ Warning at configurable threshold (default: 80%) * ✅ Graceful fallback to regex parsing * ✅ Rate limiting in `ParallelLLMParser` **Residual Risk**: LOW (budget enforcement with graceful degradation) --- #### T17: API Key Exposure in Error Messages **Description**: API keys or secrets leaked in error messages or logs. **Impact**: HIGH **Likelihood**: MEDIUM **Risk Rating**: MEDIUM **Attack Scenario**: 1. LLM provider returns error containing request details 2. Error message includes API key or sensitive data 3. Error logged or displayed to user 4. Credentials exposed **Mitigations**: * ✅ **IMPLEMENTED**: `ResilientLLMProvider` sanitizes exception messages * ✅ **IMPLEMENTED**: `SecretScanner.has_secrets()` checks error strings * ✅ Secrets in errors replaced with "(details redacted)" * ✅ API keys stored in environment variables, not code **Residual Risk**: LOW (automatic sanitization of error messages) --- ## Risk Matrix | Threat ID | Threat | Impact | Likelihood | Risk | Status | | ----------- | -------- | -------- | ------------ | ------ | -------- | | T1 | GitHub API Spoofing | HIGH | MEDIUM | HIGH | ✅ Mitigated | | T2 | Git Commit Spoofing | MEDIUM | MEDIUM | MEDIUM | ⏳ Partial | | T3 | Path Traversal Attack | CRITICAL | HIGH | CRITICAL | ✅ Mitigated | | T4 | Code Injection (YAML/JSON/TOML) | CRITICAL | MEDIUM | HIGH | ✅ Mitigated | | T5 | File System Race Conditions | MEDIUM | LOW | LOW | ✅ Mitigated | | T6 | Audit Log Tampering | MEDIUM | LOW | LOW | ⏳ Partial | | T7 | Secret Leakage | HIGH | MEDIUM | HIGH | ✅ Mitigated | | T8 | Sensitive Data in Errors | LOW | MEDIUM | LOW | ✅ Mitigated | | T9 | Large File DoS | MEDIUM | MEDIUM | MEDIUM | ⏳ Partial | | T10 | Algorithmic Complexity | LOW | LOW | LOW | ✅ Mitigated | | T11 | Privilege Escalation | HIGH | LOW | MEDIUM | ✅ Mitigated | | T12 | Dependency Confusion | HIGH | LOW | MEDIUM | ✅ Mitigated | | T13 | LLM Data Exfiltration | HIGH | MEDIUM | HIGH | ✅ Mitigated | | T14 | Prompt Injection | MEDIUM | MEDIUM | MEDIUM | ⏳ Partial | | T15 | LLM Cache Poisoning | MEDIUM | LOW | LOW | ✅ Mitigated | | T16 | LLM Cost Exhaustion | LOW | LOW | LOW | ✅ Mitigated | | T17 | API Key in Errors | HIGH | MEDIUM | MEDIUM | ✅ Mitigated | **Legend**: * ✅ Mitigated: Controls fully implemented * ⏳ Partial: Controls partially implemented or planned * ❌ Unmitigated: No controls in place --- ## Security Control Mapping | Control | Threats Addressed | Implementation | Effectiveness | | --------- | ------------------- | ---------------- | --------------- | | InputValidator | T1, T3, T4, T7 | input_validator.py | HIGH | | SecretScanner | T7 | secret_scanner.py | HIGH | | SecureFileHandler | T3, T5, T11 | secure_file_handler.py | HIGH | | Safe Parsers | T4 | yaml.safe_load, json.loads | HIGH | | Atomic File Operations | T5 | os.replace, tempfile | HIGH | | Path Resolution | T3 | path_utils.py | HIGH | | Dependency Scanning | T12 | pip-audit, Trivy, OpenSSF Scorecard | HIGH | | Fuzzing | T9, T10 | ClusterFuzzLite | MEDIUM | | Secret Scanning (CI) | T7 | TruffleHog, Scorecard | HIGH | | HTTPS Enforcement | T1 | GitHub API client | HIGH | | LLM Pre-Scan | T13, T17 | parser.py, SecretScanner | HIGH | | CostTracker | T16 | cost_tracker.py | HIGH | | ResilientLLMProvider | T17 | resilient_provider.py | HIGH | | PromptCache | T15 | cache/prompt_cache.py | HIGH | | ParallelLLMParser | T16 | parallel_parser.py | HIGH | --- ## Recommendations ### Immediate Actions (0-30 days) 1. **Implement commit signing**: Add GPG commit signing support (addresses T2) 2. **Centralized logging**: Implement immutable log aggregation (addresses T6) 3. **Rate limiting**: Add configurable rate limits for API calls and file operations (addresses T9) ### Short-term (1-3 months) 1. **Certificate pinning**: Implement cert pinning for GitHub API (addresses T1) 2. **Sandboxing**: Explore containerized execution for additional isolation (addresses T4, T11) 3. **Audit trail**: Implement cryptographic audit trail for all operations (addresses T6) ### Long-term (3-6 months) 1. **Penetration testing**: Regular third-party security audits 2. **Bug bounty program**: Public bug bounty to incentivize security research 3. **Security monitoring**: Real-time security event monitoring and alerting --- ## References * **STRIDE Methodology**: * **OWASP Threat Modeling**: * **CWE Top 25**: * **Security Architecture**: [docs/security-architecture.md](../security-architecture.md) * **Implementation**: [src/review_bot_automator/security/](../../src/review_bot_automator/security/) --- **Document Version**: 1.0 **Last Updated**: 2025-11-25 **Next Review**: 2026-02-03 (Quarterly) **Owner**: Security Team **Approval**: Pending